AHRSQuaternions and Rotations이 페이지에서AHRS Quaternions and RotationsQuaternions Quaternion은 사원수 또는 쿼터니언이라고 부르며, 복소수를 확장해 만든 수 체계입니다. i2=j2=k2=ijk=−1q=x i+y j+z k+wq‾=[xyzw]T\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i}\mathbf{j}\mathbf{k} = -1 \\ q = x\,\mathbf{i} + y\,\mathbf{j} + z\,\mathbf{k} + w \\ \underline{q} = \begin{bmatrix}x & y & z & w\end{bmatrix}^Ti2=j2=k2=ijk=−1q=xi+yj+zk+wq=[xyzw]T Norm ∥q∥=x2+y2+z2+w2\begin{Vmatrix}q\end{Vmatrix} = \sqrt{x^2 + y^2 + z^2 + w^2}q=x2+y2+z2+w2 Conjugate quaternion qˉ=−x i−y j−z k+w\bar{q} = -x\,\mathbf{i} - y\,\mathbf{j} - z\,\mathbf{k} + wqˉ=−xi−yj−zk+w pq‾=qˉpˉ\overline{pq} = \bar{q}\bar{p}pq