Skip to main content

Backbone


ResNet

Res: Residual

ResBlock

[convolutional]
batch_normalize=1
filters=32
size=1
stride=1
pad=1
activation=mish

[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=mish

[shortcut]
from=-3
activation=linear

ResNet

CSPResNet

CSP: Cross Stage Partial

[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=mish

[route]
layers = -2

[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=mish

... resnet -> 3 x n layers ...

[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=mish

[route]
layers = -1,-7 # -(3 x n + 4)

[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=mish

CSPDarknet

[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=mish

# Downsample

[convolutional]
batch_normalize=1
filters=64
size=3
stride=2
pad=1
activation=mish

... CSPResNet -> ResBlock x 1 ...

# Downsample

[convolutional]
batch_normalize=1
filters=128
size=3
stride=2
pad=1
activation=mish

... CSPResNet -> ResBlock x 2 ...

# Downsample

[convolutional]
batch_normalize=1
filters=256
size=3
stride=2
pad=1
activation=mish

... CSPResNet -> ResBlock x 8 ...

# Downsample

[convolutional]
batch_normalize=1
filters=512
size=3
stride=2
pad=1
activation=mish

... CSPResNet -> ResBlock x 8 ...

# Downsample

[convolutional]
batch_normalize=1
filters=1024
size=3
stride=2
pad=1
activation=mish

... CSPResNet -> ResBlock x 4 ...

Reference