본문으로 건너뛰기

TensorFlow 2 YOLOv4

license pypi language

tensorflow-yolov4

python3 -m pip install yolov4

YOLOv4 Implemented in Tensorflow 2.

Download Weights

Dependencies

python3 -m pip install opencv-python
python3 -m pip install tensorflow

TFlite

Ref: https://www.tensorflow.org/lite/guide/python

Objective

  • Train and predict using TensorFlow 2 only
  • Run yolov4-tiny-relu on Coral board(TPU).
  • Train tiny-relu with coco 2017 dataset
  • Update Docs
  • Optimize model and operations

Performance

Help

>>> from yolov4.tf import YOLOv4
>>> help(YOLOv4)

Inference

tensorflow

import cv2

from yolov4.tf import YOLOv4

yolo = YOLOv4()

yolo.config.parse_names("coco.names")
yolo.config.parse_cfg("yolov4-tiny.cfg")

yolo.make_model()
yolo.load_weights("yolov4-tiny.weights", weights_type="yolo")
yolo.summary(summary_type="yolo")
yolo.summary()

yolo.inference(media_path="kite.jpg")

yolo.inference(media_path="road.mp4", is_image=False)

yolo.inference(
"/dev/video0",
is_image=False,
cv_apiPreference=cv2.CAP_V4L2,
cv_frame_size=(640, 480),
cv_fourcc="YUYV",
)

tensorflow lite

from yolov4.tf import YOLOv4, save_as_tflite

yolo = YOLOv4()

yolo.config.parse_names("coco.names")
yolo.config.parse_cfg("yolov4-tiny.cfg")

yolo.make_model()
yolo.load_weights("yolov4-tiny.weights", weights_type="yolo")

save_as_tflite(
model=yolo.model,
tflite_path="yolov4-tiny-float16.tflite",
quantization="float16",
)
from yolov4.tflite import YOLOv4

yolo = YOLOv4()

yolo.config.parse_names("coco.names")
yolo.config.parse_cfg("yolov4-tiny.cfg")

yolo.load_tflite("yolov4-tiny-float16.tflite")

yolo.inference("kite.jpg")